이진 탐색 알고리즘
- 순차 탐색 : 리스트 안에 있는 특정한 데이터를 찾기 위해 앞에서부터 데이터를 하나씩 확인하는 방법
- 이진 탐색 : 정렬되어 있는 리스트에서 탐색 범위를 절반씩 좁혀가며 데이터를 탐색하는 방법
- 이진 탐색은 시작점, 끝점, 중간점을 이용하여 탐색 범위를 설정한다.
이진 탐색 동작 예시
이진 탐색의 시간 복잡도
- 단계마다 탐색 범위를 2로 나누는 것과 동일하므로 연산 횟수는 log2N에 비례한다.
- 예를 들어 초기 데이터 개수가 32개일 때, 이상적으로 1단계를 거치면 16개가량의 데이터만 남는다.
- 2단계를 거치면 8개가량의 데이터만 남는다.
- 3단계를 거치면 4개가량의 데이터만 남는다.
- 다시 말해 이진 탐색은 탐색 범위를 절반씩 줄이며, 시간 복잡도는 O(logN)을 보장한다.
이진 탐색 소스코드
재귀적 구현
import java.util.*;
public class Main {
// 이진 탐색 소스코드 구현(재귀 함수)
public static int binarySearch(int[] arr, int target, int start, int end) {
if (start > end) return -1;
int mid = (start + end) / 2;
// 찾은 경우 중간점 인덱스 반환
if (arr[mid] == target) return mid;
// 중간점의 값보다 찾고자 하는 값이 작은 경우 왼쪽 확인
else if (arr[mid] > target) return binarySearch(arr, target, start, mid - 1);
// 중간점의 값보다 찾고자 하는 값이 큰 경우 오른쪽 확인
else return binarySearch(arr, target, mid + 1, end);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
// 원소의 개수(n)와 찾고자 하는 값(target)을 입력받기
int n = sc.nextInt();
int target = sc.nextInt();
// 전체 원소 입력받기
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
// 이진 탐색 수행 결과 출력
int result = binarySearch(arr, target, 0, n - 1);
if (result == -1) {
System.out.println("원소가 존재하지 않습니다.");
}
else {
System.out.println(result + 1);
}
}
}
# 이진 탐색 소스코드 구현 (재귀 함수)
def binary_search(array, target, start, end):
if start > end:
return None
mid = (start + end) // 2
# 찾은 경우 중간점 인덱스 반환
if array[mid] == target:
return mid
# 중간점의 값보다 찾고자 하는 값이 작은 경우 왼쪽 확인
elif array[mid] > target:
return binary_search(array, target, start, mid - 1)
# 중간점의 값보다 찾고자 하는 값이 큰 경우 오른쪽 확인
else:
return binary_search(array, target, mid + 1, end)
# n(원소의 개수)과 target(찾고자 하는 값)을 입력 받기
n, target = list(map(int, input().split()))
# 전체 원소 입력 받기
array = list(map(int, input().split()))
# 이진 탐색 수행 결과 출력
result = binary_search(array, target, 0, n - 1)
if result == None:
print("원소가 존재하지 않습니다.")
else:
print(result + 1)
반복문 구현
import java.util.*;
public class Main {
// 이진 탐색 소스코드 구현(반복문)
public static int binarySearch(int[] arr, int target, int start, int end) {
while (start <= end) {
int mid = (start + end) / 2;
// 찾은 경우 중간점 인덱스 반환
if (arr[mid] == target) return mid;
// 중간점의 값보다 찾고자 하는 값이 작은 경우 왼쪽 확인
else if (arr[mid] > target) end = mid - 1;
// 중간점의 값보다 찾고자 하는 값이 큰 경우 오른쪽 확인
else start = mid + 1;
}
return -1;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
// 원소의 개수(n)와 찾고자 하는 값(target)을 입력받기
int n = sc.nextInt();
int target = sc.nextInt();
// 전체 원소 입력받기
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
// 이진 탐색 수행 결과 출력
int result = binarySearch(arr, target, 0, n - 1);
if (result == -1) {
System.out.println("원소가 존재하지 않습니다.");
}
else {
System.out.println(result + 1);
}
}
}
# 이진 탐색 소스코드 구현 (반복문)
def binary_search(array, target, start, end):
while start <= end:
mid = (start + end) // 2
# 찾은 경우 중간점 인덱스 반환
if array[mid] == target:
return mid
# 중간점의 값보다 찾고자 하는 값이 작은 경우 왼쪽 확인
elif array[mid] > target:
end = mid - 1
# 중간점의 값보다 찾고자 하는 값이 큰 경우 오른쪽 확인
else:
start = mid + 1
return None
# n(원소의 개수)과 target(찾고자 하는 값)을 입력 받기
n, target = list(map(int, input().split()))
# 전체 원소 입력 받기
array = list(map(int, input().split()))
# 이진 탐색 수행 결과 출력
result = binary_search(array, target, 0, n - 1)
if result == None:
print("원소가 존재하지 않습니다.")
else:
print(result + 1)
파라메트릭 서치(Parametric Search)
- 최적화 문제를 결정 문제('예' 혹은 '아니요')로 바꾸어 해결하는 기법
- 예시 : 특정한 조건을 만족하는 가장 알맞은 값을 빠르게 찾는 최적화 문제
- 일반적으로 코딩 테스트에서 파라메트릭 서치 문제는 이진 탐색을 이용하여 해결할 수 있다.
'알고리즘 > 정리' 카테고리의 다른 글
다이나믹 프로그래밍 (0) | 2023.03.16 |
---|---|
이진 탐색 유형 문제 (0) | 2023.03.13 |
그래프 탐색 알고리즘(DFS/BFS) 유형 문제 (0) | 2023.03.13 |
그래프 탐색 알고리즘(DFS/BFS)(4) - BFS(Breadth-First Search) (0) | 2023.03.13 |
그래프 탐색 알고리즘(DFS/BFS)(3) - DFS(Depth-First Search) (0) | 2023.03.13 |